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We solve the heat-conduction problem for a muitilayer rectangular transverse fin on 
a circular tube. We investigate the effect of fin dimensions on fin efficiency. 

The fin efficiency E characterizes the temperature variation over the surface of a fin. 
In most cases the air-coolers of refrigerating units are covered with a layer of frost. The 
distribution of temperatures on such a "three-layer fin" can be obtained by solving a system 
of heat-conduction equations. The following simplifications are usually made: i) the materi- 
al of the fin is homogeneous and isotropic; 2) the heat flux to or from the fin at each 
point of its surface is directly proportional to the difference between the fin temperature 
at that point and the temperature of the medium flowing past it; 3) the thermal conductivity 
of the fin is constant; 4) there are no heat sources in the fin itself; 5) the coefficient 
of heat transfer to the fin is constant over the entire surface of the fin; 6) the tempera- 
ture at the base of the fin is constant; 7) the temperature of the surrounding medium is con- 
stant; 8) the amount of heat passing through the outer edge of the fin is negligible in com- 
parison with the amount of heat transferred through the lateral surfaces; 9) the thickness 
of the frost layer is constant over the entire fin surface; 10) there is no contact thermal 
resistance between the layers. 

Some approximate equations for calculating the efficiency of rectangular and square fins 
covered with a frost layer are already known [i]: 
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For mh ~2.7 (see [2]) 

E = 1/(mh). ( 2 )  

In the optimization of refrigerating units, when we select the optimal fin arrangement, 
an error in determining E results in an almost equal error in determining the optimality fac- 
tor. The values of the efficiency E found for square fins in accordance with (!) differ from 
the experimental values [4] by 5-40%. The method proposed below makes it possible to obtain 
more accurate values. 

By virtue of simplifications I-I0 and considerations of symmetry, the problem reduces 
to a "two-layer" stationary heat-conduction problem in the region illustrated in Fig. I. 

Let V = Tfr -- T a be a function given on the frost layer; let U = Tfi -- T a be a function 
given on the metal layer. We are required to solve the system of differential equations 
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Fig. i. Domain of definition 
of the functions U(x, y, z), 
0< z ~<s and V(x, y, z), s ~< 

z ~ s + 6fr" 

with the boundary conditions 
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Because the boundary of the domain of definition of the functions U and V is quite complicat- 
ed, we resort to the following method. We shall enlarge the domain so as to make it a com- 
plete parallelepiped and solve the following boundary-value problem: it is required to solve 
the system (3) with the boundary conditions 

I 
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Oy =o= r z )=  O~<x~<O.5de, 

(0, 0.Sde< x ~.< k, 
(4a) 

OV [ wTxz § w~x~ § w~z~ + w1~ § wnz § wl,, 

-O,q tr =~(X, Z ) :  I if O~x~<O.5de, 

[0, if O.Sde.< X ~ k 

and other boundary conditions coinciding with (4). 

The functions @(x, z) and ~(x, z) are chosen to be polynomials of second degree on the 
basis of physical considerations; the parameters w i (i = i, 2, ..., 12) are determined after 
solving the boundary-value problem, requiring that the functions U and V have the values of 
Tfb -- Tfionthesurface x 2 + yZ = (0.Sde)2, 0 ~-~z ~s + ~fr. 

Since the functions U and V are even functions of x and y and the boundary conditions 
are of the first and second kinds, in order to solve the boundary-value problem we can use 
the Fourier cosine transform successively with respect to x and y [3]. Taking account of the 
boundary conditions (4), (4a), we arrive at a system of ordinary differential equations of 
second order with constant coefficients: 
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Fig. 2. Efficiency of square fins as a function of mh for various 
values of B/d e . The dashed curve corresponds to the values obtained 
from (I). 

Fig. 3. Effect of fin shape on efficiency [I) rfi = 31fi/2; 2) rfi= 
Ifi; 3) rfi = 21fi/3]. The dashed curve corresponds to the values 
obtained by (I). lfi/d e = i0. 
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Here U, V are cosine transforms of the functions U and V, respectively, with respect to x 
~X ~X 
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V (p, q, z) = C3 (p, q) exp (az) C 4 (p, q) exp (--az) 4- O (P, q, z). 

~g 
~X 

U (0, O, z) = C~ (0, O) z ' C~ (0, O) 4- R (0, O, z) z% 
~ g  
~ X  

V(O, O, z )=Ca(O,  O)z C,(O, O)--O(O, O, z)z ~, 

where the Cj(p, q) (j = i, 2, 3, 4) are determined from the boundary conditions and R(p, q, z), 
Q(p, q, z) are polynomials of second degree in z. 

The functions U and V can be written in the form of a series ([3]) 

U(x, V, z )=- - I  E E~.~J  apx cos- - , aqg  
kf p=o q=o U(p, q, z)cos k f (7) 

COS-- V(x, V, z ) =  - ~  V (p, q, z) cos k f 
p = O  q = O  

The series (7) are majorized by the convergent series 2 Un with the general term U n = 
n=l 

1 / ( p a  + q2) and a r e  t h e r e f o r e  c o n v e r g e n t .  

I t  i s  u s u a l l y  s u f f i c i e n t  to  u se  a few t e rms  o f  t h e  s e r i e s  ( p ~  3, q 4 3 )  i n  o r d e r  to  
o b t a i n  a r e s u l t  w i t h  t h r e e  a c c u r a t e  d i g i t s  a f t e r  t h e  d e c i m a l  p o i n t .  The a v e r a g e  o f  t he  f u n c -  
t i o n  U(x,  y ,  z) i n  t h e  domain D ( a t  t h e  i n t e r f a c e  b e t w e e n  t h e  m e t a l  and t h e  f r o s t )  can  be 
found  f rom t h e  f o r m u l a  
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TABLE i. Efficiency Values of Square Transverse Fins Covered 
with a Layer of Frost (d e = 0.012 m, Tfb = 267=K, T a = 272~ 

t fi rfi 6 fi X fi 0 fr ~'ft mh E 

0,024 
0,024 
0,048 

0,~8 

0,096 

0,096 

0,I 

0,1 

O,1 

0,1 

0,I 

0,1 

0,1 

O,1 

0,024 
0,024 
0,048 

0,048 

0,096 

0,096 

0,I 

0,1 

O,I 

0,1 

0,I 

0,i 

O,l 

0,1 

0,1 

O, 0002 
0,0002 
0,0002 

O. ,0002 

0,0002 

0,0002 

0,0002 

0,0002 

109,3 
109,3 
I09,3 

109,3 

109,3 

109,3 

H6,3 

116,3 

116,3 

116,3 

116,3 

116,3 

23,3 

11,6  

350 

0,0002 
0,0008 
0,0002 

0,0008 

0,0002 

0,0002 

0.001 

0,001 

0,001 

0,001 

0,001 

0,001 

0,001 

0,001 

0,001 

0,116 
0,116 
0,116 

0,115 

0,116 

0,116 

1,163 

0,233 

0,116 

O, 002 

0,116 

0,115 

0.I16 

0,116 

0,116 

0,2 
0,2 
0,2 
0,5 
2,0 
0.2 
0,5 
2,0 
0,2 
1,0 
1,5 
2,5 
0,2 
1,0 
1,5 
2,5 
(3,2 
0,5 
1,0 
] ,o 
2,5 
0.2 
0,5 
1,O 
1,5 
2,5 
0,2 
0,5 
1,0 
1,5 
2~5 

0,2 
0,5 
0,2 
0,5 
1,o 
1,5 
9,0 
o.2 
0,5 
0,2 
0,5 
1,o 
1.5 
2,0 
0,2 
0,5 
I,O 
i ,5  
2,0 

0,2 
0,5 
1,o 
1,5 
2,5 

O, 942 
0,943 
O, 982 
0,895 
0,334 
0,982 
0,902 
0,358 

. 0,988 
0,777 
0,626 
0,397 
0,988 
0.782 
0,611 
0,377 
0,99 
0,933 
o, 795 
0,620 
0,372 
0,987 
0,935 
0,781 
0,610 
0,368 
0,988 
0,932 
0,770 
0,622 
0,350 
0,476 
0.982 
0,930 
0,988 
0,932 
0,778 
0,610 
0,480 
0,988 
0,930 
0,989 
0,935 
0,780 
0.614 
0,498 
0.989 
O, 938 
0,790 
0,603 
0,478 
0,410 
0,988 
0~932 
0,778 
0,630 
0.376 

(D) (D) 

The fin efficiency can then be written as 

E = U~v l(Tfb-- T~ ). 

The error in the values of E found by this method is negligible in comparison with the 

experimental data for "single-layer" square fins [4]. 

As can be seen from the foregoing, the method is very cumbersome. It is almost impos- 
sible to use it for hand calculations. However, finding E by this method on hlgh, speed elec- 
tronic computers does not substantially increase the total time of the optimization calcula- 
tions. For ~fr = 0 we obtain a heat-conduction problem for a "single-layer" thin fin. 
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The methods of operational calculus can be used in solving the heat-conduction equations 
for other types of fin arrangement. 

For our analysis, we carried out calculations for "single-layer" and "three-layer" square 
and rectangular fins for a wide range of variation of the parameters ~fi = 2k, rfi = 2f, ~fi, 

%fi, ~fr, %fr, ~" 

The results of the calculations for some square fins covered with a frost layer are 
shown in Table i. In Fig. 2 we show the results of the calculations in the form of the func- 
tion E = F(mh, B/de). Here B is the length of a fin along the path of motion of the air; for 
a~square fin this is a side of the~square~ This traditiQnal representation enables us to 
compare directly the results of calculations made by the proposed method and the results of 
calculations made by other authors, in particular the results of calculations based on for- 
mula (i). 

In addition, it was found that the effects of the thickness of the fin and the frost 
layer and those of the thermal conductivity of the fin material and the frost are completely 
taken into account by the quantity mh, i.e., fins with equal values of B and mh have equal 
efficiency E for various values of ~fi, %fi, ~fr, and %fr. When we pass to other fins with 
other values of B, even for identical values of mh, ~fi, %fi, ~fr, and %fr, the efficiency 
changes; this is clearly visible from Table I. 

Consequently, the number of variables on which E depends is equal in practice to two 
for square fins: 

and three for rectangular fins: 

E =  F 1 mh, .de ~i 

In Fig. 2 we indicate by a dashed curve the values of E obtained by formula (I). This 
curve practically coincides with the curve for B/d e = 8. 

For values of B/de~ 6 formula (i) yields a value which is too high: the error amounts 
to as much as 30%; for B/d e > 6 the values are in good agreement with the calculated values: 
the error reaches 13% only in isolated cases. 

Figure 3 shows the graphs for the efficiency E of rectangular fins as a function of mh 
for fins of various shapes. It can be seen from the figure that E depends very much on the 
ratio Ifi/rfi , and therefore the error in calculating the efficiency by (i) can amount to as 
much as 54%. 

Thus, the proposed method is much more accurate than previously known methods~ Graphs 
and diagrams constructed by this method can be used for hand calculations of E. 

NOTATION 

~, heat-transfer coefficient from air, ~/(m2-deg); $, moisture condensation coefficient; 
6fi, fin thickness, m; %fi, thermal conductivity of fin material, W/(m.deg); ~fr, thickness 

of frost layer, m; %fr, thermal conductivity of frost, W/(modeg); a = ~#(p2/k2) + (q2/~2); 
de, external diameter of finned tube, m; f = rfi/2 , m; s = ~fi/2, m; k = Zfi/2 , m; ~fi, length 
of fin along path of motion of the air, m; rfi , width of fin, m; Stmin, Stmax, minimum and 
maximum distance between tubes, m; Tfi, Tfr , Ta, Tfb , temperatures of fin, frost, air, and 
fin base, respectively, ~ 

i. 

2. 
3. 
4. 
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